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Abstract. A ring of diffusively coupled Réssler oscillators, which can develop the conventional rotating wave
from high-dimensional chaos by increasing the coupling ¢ continuously is studied. The chaotic generator
for the rotating wave emerges around € = €o, where the topological transition induced by the coupling not
only changes the topological structure of all the oscillators, which share a common strange attractor, but
also changes them into being different from each other. Starting from this transition, infinitely long range
temporal correlation and spatial order in the style of antiphase state are established gradually, which gives

rise to the chaotic generator of the rotating wave.

PACS. 05.45.Xt Synchronization; coupled oscillators — 05.45.Jn High-dimensional chaos

Since Turing analyzed rings of cells as models of morpho-
genesis and proposed that isolated rings could account for
the tentacles of hydra and whorls of leaves of certain plants
in 1952 [1], rings of coupled oscillators have been used ex-
tensively in physiological and biochemical studies [2,3],
coupled laser systems, Josephson junction arrays, electri-
cal circuits, coupled chemical oscillators, etc. [4-6]. There
are three common types of couplings between elements of
the rings which determine its symmetry. The first one is
global coupling, i.e., all to all coupling, mean-field cou-
pling or star configuration (we regarded it as a ring for
convenience). Each oscillator is identically coupled to all
others. All permutations of n objects are involved, and we
name its symmetry group S,. The second is two-way cou-
pling into a chain, most of which are diffusive coupling.
Each oscillator is identically coupled to its nearest neigh-
bor on both sides, and we name its symmetry group D,,.
If one direction is preferred, we get the third case: one way
coupling into a chain. We call its symmetry group, Z,.
Golubitsky et al. [7] developed a general group-
theoretical approach to study rings of coupled oscillators
when temporal symmetry (phase shift between various os-
cillators) is taken into account, they implied that there
may be a common stable dynamical state for the three
types of coupling systems mentioned above. This state is
the periodic rotating wave, in which each element evolves
in the same waveform but %th of a period out of phase
with each other. Since Z, C D,, and Z, is a subgroup of
D,,, D, rotating-wave solutions can have two distinct di-
rections of rotation, while only one sense of rotation will
occur for Z,. As for S,, they occur with extraordinary
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multiplicity: the existence of one such attractor implies
simultaneous coexistence of (n — 1)! such like attractors,
since all permutations are guaranteed.

In early studies, interest was focused on coupled os-
cillators, each of which is periodic without coupling. This
dynamical state had been one of the patterns of horse gait,
centipedes crawling, lamprey swimming, etc. [3]. During
the last decade, interest turned to the study of arrays of
Josephson junction or multi mode lasers with S,, symme-
try [4], in which the single oscillator can bifurcate into
chaos and the chaotic behavior of the arrays has also been
known. The typical rotating wave has been observed in
these systems, and it was given several different names:
antiphase solution, splay state, or ponies on a merry-go-
round [4-6]. Since this dynamical state comes mainly from
the symmetry of systems, we may expect it to be ob-
served in coupled chaotic systems (i.e., individual systems
are chaotic without coupling). Recently, Matias et al. [8]
reported the observation of a periodic rotating wave in
rings of unidirectionally coupled analog chaotic oscillators,
which are Z,, symmetric systems. As for D,, symmetric
systems, Hu et al. [9] presented a periodic rotating wave
in their study of the development of spatiotemporal chaos
in diffusively coupled systems, with the name of antiphase
state. We will use the latter in this context.

From the above, it seems that we can expect the rotat-
ing wave state, (i.e., the antiphase state, the ponies on a
merry-go-round), in all the three types of coupled chaotic
oscillators. The remaining question is: how does the spa-
tial order emerge from our high-dimensional chaotic sea?
In the systems of periodic coupled oscillators comes to
our help the symmetric Hopf bifurcation theorem of
Golubitsky and Stewart [7], which is inseparable from the
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Fig. 1. Orbits of the coupling system in (z,y) space. (a) High-dimensional chaos without order either in time or spatial,
e = 0.005. (b) High-dimensional chaos with roughly spatial order, which can be regarded as a chaotic long time averaged-
antiphase state, ¢ = 0.018. (c) The conventional periodic rotating wave, & = 0.080. The numbers ¢ = 1,2, ...,6 in the figures

indicate the positions of the i oscillator at an arbitrary instant.

conceptions of equivariance and invariance under actions
of symmetry. Regretfully it can not be applied as is un-
der high-dimensional chaotic conditions with neither strict
temporal nor strict spatial symmetry. As far as the sys-
tems of coupled chaotic oscillators are concerned, we have
no fitting tools to resort, yet. One way to obtain the ro-
tating wave is implied in reference [9] for a ring of cou-
pled Rossler oscillators. That is by increasing the cou-
pling strength continuously from zero. The system with
D,, symmetry [9] can be written as

Ti= —y; — zi + € (Tit1 + Tio1 — 214)

Yi= @i +ay; + € (Yit1 + yi-1 — 2y:) (1)

Zi= b+ (2 — ¢)zi + € (2zit1 + zic1 — 22)

Titn = Ti, Yitn = Yi, Zign =25 1 =1,2,...,n.

For a = 0.45, b = 2.0, and ¢ = 4.0, the single Rossler os-
cillator is chaotic. We fix the system size to n = 6, so this
is an 18-dimensional system. With the coupling ¢ = 0 and
random initial conditions, all oscillators perform chaotic
motions as the single oscillator does, however, they have
asynchronous trajectories. This motion, which is random

in both space and time, is shown in Figure la. When ¢
is increased larger than ¢¢ = 0.01, averaged spatial order
will emerge and form a chaotic generator for the conven-
tional rotating wave. Figure 1b gives an example of this
kind of chaotic averaged-antiphase state when ¢ = 0.018,
and the numbers ¢ = 1,2,...n in the figure indicate the
position of the ith oscillator at an arbitrary instant. Fig-
ure 1b shows that each oscillator is roughly (2£) out of
phase (defined as the angle of polar coordinate in (z, y)
space) with its neighbor. The averaged (or say, roughly)
spatial symmetry is transferred by the chaotic generator of
averaged-antiphase state, and will be transferred along the
process of increasing coupling strength. When ¢ > 0.057,
the system finally develops into a periodic rotating wave
as shown in Figure 1c, in which each oscillator evolves in
one common limit cycle but (27”) out of phase with each
other. From spatially random chaos to a periodic rotat-
ing wave, the system should change from spatial disor-
der to ordered arrangement, and establish infinitely long
range temporal correlations. Among the whole variation
process, the transition in the vicinity around ¢ =~ 0.010 is
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Fig. 2. Orbits of the first oscillator in the coupled system in (z,y) space. (a) € = 0.0; (b) € = 0.008; (c) e = 0.014; (d) € = 0.020.

the most interesting. In this paper, we shall look into this
key transition, and try to make clear what happens there.

We consider the change of one of the chaotic attractors
as the coupling strength increases, and plot the attractors
for e =0, 0.008, 0.014, and 0.020 in Figures 2a—d. It is ob-
vious that the topological structure of the attractors [10]
does change when the coupling is increased above €y. The
attractors lose their finite structure around the spiral cen-
ter, where a funnel attractor (see Figs. 2a and b) changes
into a simpler spiral one (see Figs. 2c and d). This topolog-
ical transition is induced only by the coupling interaction.

A coupling-induced topological transition occurs,
which brings forward a natural question: will the strange
attractors, which are equal for very small coupling, change
and become different when the coupling increases to € >
£0? Yuan et al. [11] proposed an idea to test if two chaotic
one dimensional processional processes are dynamically
identical. A single Rossler system is the same as the system
considered in their Letter, and it can also be thought of as
approaching asymptotically to a two dimensional chaotic
attractor. Enlightened by their idea, we take a simpler
way to decide when two strange chaotic attractors are not
equal. Using x; = 0 as a surface of section, we record the
y coordinate every time (z;,y;, z;) intersects x; = 0 with

dz;/dt > 0. Thus we obtain a sequence {y;(N)}, and for
each case i = 1,2, ...,n, we have N of them. We adopt the
natural measure p (i.e., the measure of an open interval C;
is the fraction of iterates that a typical trajectory spends
in C;) [12], while p(y;) is the fraction of iterates the sys-
tem spends anywhere (among all the data in the sequence
{yi(n)}) with y;(n) being smaller than y;. In this way, we
plot w(y;) versus y;, i = 1,2,...,n; they should overlap
with each other if the strange attractors are equal. The
results for ¢ = 0.008, 0.020 are presented in Figures 3a
and b, respectively. It is clearly shown in Figure 3b that
the n oscillators have different natural measure, therefore
they have different topological structure.

To clarify further, we define the inhomogeneity quan-
tity as

Q1 = max{

nas ,3=1,2,...,n
1>

(2)

which measures the degree of the inequality of the various
attractors (also, translational symmetry). If all the attrac-
tors are equal (translational invariant) Q; = 0; otherwise,
Q@ > 0. Figure 3c shows the inhomogeneity quantity @ as

max l(ys) — (y;)[}
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Fig. 3. Probability distributions of the natural measure for all of the n oscillators. (a) € = 0.008. (b) € = 0.020. Both the
horizontal and the vertical axis are rescaled into [0, 1], and we plot only half data for clear comparison. (c) “Inhomogeneity
quantity” Qr versus the coupling strength. Translational symmetry is satisfied when € < g9, and is broken at € = ¢y.

a function of the coupling strength. For ¢ < ¢y, @7 = 0; for
e > eg, Q1 > 0, the oscillators become unequal, which re-
flects that the translational symmetry is broken up. Thus,
at € = g¢, the topological transition results in the oscil-
lators being different from one another, i.e., translational
symmetry breaking.

Apart from the difference in the measure of the at-
tractors we expect that the correlation functions, for any
one of the oscillators with coupling larger than ¢¢, should
also be different from that for € < g¢, since there, a cou-
pling induced topological transition occurs. We define the
standard correlation function for the first oscillator as

T
S11a2)(7) :Tlim —/ w1 (t)z12)(t — 7)dE
0

T—oo T—o0

1T 1T

T Jo T Jo
where S71(7) describes the auto-correlation function of
the first oscillator with time lag 7, and Si2(7) describes
the correlation function between the first oscillator and
the second one with time lag 7. We calculate S11(7) and
S12(7) for the states shown in Figure 2, and present the
results in Figures 4al—a4 and b1-b4. The correlation func-
tions are not always in a smooth exponentially decay pro-
file. However, we can consider the contour lines by fitting
them into exponentially decay profiles, since roughly, the
smaller the time lag the larger the correlation strength,
see Figures 4al-b4. In order to give a rough measure of
the characteristic decay time, we consider the quantity 7,
which satisfies

(4)

Si112)(10) = [Tg(lgifo) Stz (r)]e™!

The auto-correlation without time lag is always the maxi-
mum among all of those with 7 # 0 and 7y is obtained on
the base of exponentially decay fitting. The characteris-
tic time 79 of the auto-correlation is plotted as a function
of the coupling strength € in Figure 4c. It is reasonable
that the characteristic time 79 for a funnel attractor is
different from that of a spiral one. Increasing the coupling
strength starting from zero, the characteristic time 7y in-
creases slowly for small & (¢ < g¢), while it does so dra-
matically after 9. It approaches to infinity as further in-
creasing the coupling from the motion in Figure 1b, which
shows that there has established approximately infinitely
long range temporal correlation.

It is interesting to consider how the correlation func-
tion between one oscillator and its nearest neighbor be-
haves with respect to the auto-correlation. With very
small coupling interaction, there is the same very small
correlation between the oscillators. Increasing the coupling
strength, both the strength and the characteristic time in-
crease as shown in Figures 4bl-b4. When ¢ = 0.020, the
strength and the characteristic time of Sj2(7) are compa-
rable with those of S11(7). The chaotic averaged-antiphase
generator happens when € > g, roughly at 27” angle phase
lag between one oscillator and its nearest neighbor. In Fig-
ure 4d, we plot max(S12(7)) and S12(3) (S12(32) indi-
cates the larger one between S12(22) and S12(—2Z) in view
of the two different orientational type of the roughly spa-
tial order). With very small coupling, almost no correla-
tion can be detected; around g, max(Si2(7)) is obviously
larger than 512(27”), the largest correlation is not taking
place at the rough%y spatial order we are concerned with;

ys

with € > go, S12(%") increases to approach max(S12(7))

continuously, which means that the rough spatial order of
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Fig. 4. (al-a4) Auto-correlation functions S11(7) versus T corresponding to Figure 2a-d. (al) € =

) € = 0.020. (b1-b4) Correlation functions Si2(7) versus 7 corresponding to (al-ad). (c
7o defined in equation (3) for auto-correlation function versus the coupling strength e. (d) max(Si2(
S12(2%) corresponds to the larger one between S12(2F) and Sia(—

e =0.014; (a4

N

averaged antiphase is that with the largest correlation be-
tween nearest oscillators since S12(2%) = max(S12(7)), in
this way strengthening the argument of comparing mea-
sures. Having had S12(2%) = max(S12(7)), the roughly
spatial order has been established as the antiphase state.

In summary, we investigate the high-dimensional
chaotic model of diffusively coupled ring of Rossler os-
cillators. An averaged-antiphase state generates from the
high-dimensional chaotic sea around ¢y, and will develop
into a periodic state of conventional rotating wave by in-
creasing the coupling continuously. This transition around
go is our focus in the present work. With e < g¢, the oscil-
lators have a common strange attractor and they evolve
“randomly” in both time and spatial. Around ¢, there
happens a topological transition induced by the coupling.

0.007 0.014 ¢

0.0; (a2) £ = 0.008; (a3)
) The characteristic time
7)) and S12(%F) versus e.

%)

The topological transition not only changes the topolog-
ical structure of all the oscillators, which share one com-
mon strange attractor, but also changes them into being
different from each other. On the basis of auto-correlation
functions, we show that starting from this transition, the
system begins to establish infinitely long range temporal
correlation. On the other hand, the correlation function
between neighboring oscillators show that the angular or-
ganization is around 27“ phase lag, which is the very gen-
erator of a rotating wave.

To spot the transitions, we propose a simple way to
determine if two strange chaotic attractors are not equal,
thus showing for the first time that the elements of a cou-
pling system have different topological structure. As re-
viewed in the introduction, the periodic rotating wave can
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be expected in the three kinds of coupling chaotic systems
which possess Z,,, D, or .S,, symmetry. We hope the topo-
logical transition demonstrated in this paper can be found
useful in finding rotating waves in experimental systems
of the three common types of chaotic rings.
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